Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING

نویسندگان

  • Xiaomei Wu
  • Fei-Hua Wu
  • Xiaoqiang Wang
  • Lilin Wang
  • James N. Siedow
  • Weiguo Zhang
  • Zhen-Ming Pei
چکیده

Cyclic GMP-AMP (cGAMP) synthase (cGAS) is recently identified as a cytosolic DNA sensor and generates a non-canonical cGAMP that contains G(2',5')pA and A(3',5')pG phosphodiester linkages. cGAMP activates STING which triggers innate immune responses in mammals. However, the evolutionary functions and origins of cGAS and STING remain largely elusive. Here, we carried out comprehensive evolutionary analyses of the cGAS-STING pathway. Phylogenetic analysis of cGAS and STING families showed that their origins could be traced back to a choanoflagellate Monosiga brevicollis. Modern cGAS and STING may have acquired structural features, including zinc-ribbon domain and critical amino acid residues for DNA binding in cGAS as well as carboxy terminal tail domain for transducing signals in STING, only recently in vertebrates. In invertebrates, cGAS homologs may not act as DNA sensors. Both proteins cooperate extensively, have similar evolutionary characteristics, and thus may have co-evolved during metazoan evolution. cGAS homologs and a prokaryotic dinucleotide cyclase for canonical cGAMP share conserved secondary structures and catalytic residues. Therefore, non-mammalian cGAS may function as a nucleotidyltransferase and could produce cGAMP and other cyclic dinucleotides. Taken together, assembling signaling components of the cGAS-STING pathway onto the eukaryotic evolutionary map illuminates the functions and origins of this innate immune pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and Functional Analyses of DNA-Sensing and Immune Activation by Human cGAS

The detection of cytosolic DNA, derived from pathogens or host cells, by cytosolic receptors is essential for appropriate host immune responses. Cyclic GMP-AMP synthase (cGAS) is a newly identified cytosolic DNA receptor that produces cyclic GMP-AMP, which activates stimulator of interferon genes (STING), resulting in TBK1-IRF3 pathway activation followed by the production of type I interferons...

متن کامل

Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway.

The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers host immune responses such as the production of type I interferons. Cytosolic DNA induces interferons through the production of cyclic guanosine monophosphate-adenosine monophosphate (cyclic GMP-AMP, or cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and qua...

متن کامل

Mesenchymal stem cells detect and defend against gammaherpesvirus infection via the cGAS-STING pathway

Mesenchymal stem cells (MSCs) are widely used in clinical settings to treat tissue injuries and autoimmune disorders due to their multipotentiality and immunomodulation. Long-term observations reveal several complications after MSCs infusion, especially herpesviral infection. However, the mechanism of host defense against herpesviruses in MSCs remains largely unknown. Here we showed that murine...

متن کامل

SENP7 Potentiates cGAS Activation by Relieving SUMO-Mediated Inhibition of Cytosolic DNA Sensing

Cyclic GMP-AMP (cGAMP) synthase (cGAS, a.k.a. MB21D1), a cytosolic DNA sensor, catalyzes formation of the second messenger 2'3'-cGAMP that activates the stimulator of interferon genes (STING) signaling. How the cGAS activity is modulated remains largely unknown. Here, we demonstrate that sentrin/SUMO-specific protease 7 (SENP7) interacted with and potentiated cGAS activation. The small ubiquiti...

متن کامل

cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells.

Human cytomegalovirus (HCMV) infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS) senses cytosolic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014